网站地图邮箱登陆 English version中国科学院
 
 
  研究队伍
  · 院士专家
 
  · 研究员
 
  · 杰出青年
 
  · 副研究员
 
  · 人才招聘
 
 
您的位置: 首页>研究队伍>人才
姓 名:
 刘聪
性 别:
 男
职 称:
 研究员
学 历:
 博士研究生
电 话:
 021-68582528
传 真:
 021-64166128
电子邮件:
 liulab@sioc.ac.cn
个人主页:
 http://amyloidlab.cn/
通讯地址:
 上海市浦东张江高科技园区海科路100号13号楼 200032

简历:

1998-2002  吉林大学  学士   Jilin University   B.S.
2002-2008  北京大学  博士   Peking University   Ph.D
2008-2013  美国加州大学洛杉矶分校&霍华德休斯医学院  博士后  UCLA&HHMI Postdoc
2013.9-至今 中国科学院生物与化学交叉研究中心 研究员、课题组长


研究方向:

1. 与神经退行性疾病如阿尔兹海默病、帕金森病, 渐冻人病相关的蛋白质的错误折叠,异常积聚,和淀粉样化的分子机理和结构基础研究。

2. 新颖的结构生物学方法的发展和运用,如蛋白质纳米级晶体的电子衍射技术,in-cell NMR技术等。并运用其系统研究淀粉样蛋白在体外及体内聚集的结构基础。

3. 基于多种神经退行性疾病的重要靶点分子结构信息的药物先导物的设计,筛选和优化。

4. 基于淀粉样多肽的具有新功能的新材料设计,开发和应用。


专家类别:
研究员

职务:
课题组长

社会任职:

获奖及荣誉:

2015 入选国家高技术研究发展计划(863计划)青年科学家专题项目
2012 IUCr青年科学家国际旅行资助奖 国际晶体学会蛋白晶体学新方法会议
2012 ADDF 杰出青年科学家奖 第六届神经退行性疾病药物开发年会
2007 杰出墙报奖 第六届国际蛋白科学会议

代表论著:

1.  Zhao Q.Y., Tao Y.Q., Zhao K., Ma Y.Y., Xu Q.H., Liu C., Zhang S.N., Li D.*; Structural insights of Fe 3+ induced α-synuclein fibrillation in Parkinson's disease. Journal of Molecular Biology, 2022.

 

2.  Wang L.Q., Ma Y.Y., Yuan H.Y., Zhao K., Zhang M.Y., Wang Q., Huang X., Dai B., Chen J., Li D., Zhang D.L., Wang Z.Z., Zou L.Y., Yin P., Liu C.*, Liang Y.*, Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nature Communications, 2022, 13(1)

3.  Li D.*, Liu C.*, Spatiotemporal dynamic regulation of membraneless organelles by chaperone networks. Trends in Cell Biology, 2021, 32(1).

4.  Fan Y., Zhao Q.Y., Xia W.C., Tao Y.Q., Yu W.B., Chen M.J., Liu Y.Q., Zhao J., Sun Y.P., Si, C.F., Zhang S.Q., Zhang Y.Y., Li W.S., Liu C.*, Wang J.*, Li D.*, Generic amyloid fibrillation of TMEM106B in patient with Parkinson's disease dementia and normal elders. Cell Research, 2022.

5.  Huang C.A., Lu J.X., Ma X.J., Qiang J.L., Wang C.C., Liu C., Fang Y.S., Zhang Y.Y., Li D.*, Zhang S.N.*, The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins. Journal of Biological Chemistry, 2022, 298(5).

6.  Li Y.C., Lu S.Y., Gu J.G., Xia W.C., Zhang S.N., Zhang S.Q., Wang Y., Zhang C., Sun Y.P., Lei J., Liu C., Su Z.M.*, Yang J.T.*, Peng X.Z.*, Li D.*, SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation. Protein Cell, 2022, 1-13.

7.  Li Y.C., Gu J.G., Liu C.*, Li D.*, A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation. Cell Reports Physical Science, 2022.

8.  Zhu S.B., Gu J.G., Yao J.J., Li Y.C., Zhang Z.T., Xia W.C., Wang Z., Gui X.R., Li L.T., Li D., Zhang H.*, Liu C.*, Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Developmental Cell, 2022, 57(5).

9.  Song Y.X., Dai B., Wang Y., Wang Y., Liu C., Gourdon P., Liu L.*, Wang K.T.*, Dong M.D.*, Identifying Heterozipper β-Sheet in Twisted Amyloid Aggregation. Nano Letters, 2022, 22(9).

10. Long H.F., Zeng S.Y., Sun Y.P., Liu C.*, Biochemical and biophysical characterization of pathological aggregation of amyloid proteins. Biophysics Reports, 2022, 8(1).

11. Long H.F., Zeng S.Y., Li D.*, Cellular and animal models to investigate pathogenesis of amyloid aggregation in neurodegenerative diseases. Biophysics Reports, 2022, 8(1).

12. Li, D.*, Liu, C.*, Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nature Reviews Neuroscience, 2022.

13. Li Y.C., Gu J.G., Wang C., Hu J.J., Zhang S.Q., Liu C., Zhang S.N., Fang Y.S., Li D.*, Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience, 2022, 25(6).

14. Liu D.L., Wei Q.J., Xia W.C., He C.D., Zhang Q.K., Huang L., Wang X.Y., Sun Y.P., Ma Y.Y., Zhang X.H., Wang Y., Shi X.M., Liu C.*, Dong S.W.*, O-Glycosylation Induces Amyloid-β To Form New Fibril Polymorphs Vulnerable for Degradation. J. Am. Chem. Soc., 2021, 143(48).

15.  Sun Y.P., Long H.F., Xia W.C., Wang K., Zhang X., Sun B., Cao Q., Zhang Y.Y., Dai B., Li D., Liu C.*, The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Nature Communications, 2021, 12(1).

16. Wang L.Q., Zhao K., Yuan H.Y., Dang H.B., Ma Y.Y., Wang Q., Wang C., Sun Y.P., Chen J., Li D., Zhang D.L., Yin P., Liu C.*, Liang Y.*, Genetic prion disease-related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. Science Advances, 2021, 7(37).

17. Sun Y.P., Zhang S.Q., Hu J.J., Tao Y.Q., Xia W.C., Gu J.G., Li Y.C., Cao Q., Li D., Liu C.*, Molecular structure of an amyloid fibril formed by FUS low-complexity domain. iScience, 2021, 25(1).

18. Wu X.L., Ma Y.Y., Zhao K., Zhang J., Sun Y.P., Li Y.C., Dong X.Q., Hu H., Liu J., Wang J., Zhang X., Li B., Wang H.Y., Li D., Sun B., Lu J.X.*, Liu C.*, The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(14).

19. Gu J.G., Wang C., Hu R.F., Li Y.C., Zhang S.N., Sun Y.P., Wang Q.Q., Li D., Fang Y.S.*, Liu C.*, Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Research, 2021, 31(9).

20. Zhang S.N., Liu Y.Q., Jia C.Y., Lim Y.J., Feng G.Q., Xu E.Q., Long, H.F., Yasuyoshi Kimura, Tao Y.Q., Zhao C.Y., Wang C.C., Liu Z.Y., Hu J.J., Ma M.R., Liu Z.J., Lin J., Li D., Wang R.X., Valina L Dawson, Ted M Dawson*, Li Y.M.*, Mao X.B.*, Liu C.*, Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America of the United States of America, 2021, 118(26).

21. Long H.F., Zheng W.T., Liu Y., Sun Y.P., Zhao K., Liu Z.Y., Xia W.C., Lv S.R., Liu Z.T., Li D., He K.W.*, Liu C.*, Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Proceedings of the National Academy of Sciences of the United States of America of the United States of America, 2021, 118(20).

22. Tao Y.Q., Xie J.F., Zhong Q.L., Wang Y.Y., Zhang S.N, Luo F., Wen F.C., Xie J.J., Zhao J.W., Sun X.O., Long H.F., Ma J.F., Zhang Q., Long J.G., Fang X.Y., Lu Y., Li D., Li M., Zhu J.D., Sun B., Li G.H.*, Diao J.J.*, Liu C.*, A novel partially-open state of SHP2 points to a "multiple gear" regulation mechanism. Journal of Biological Chemistry, 2021, 296, 100538.

23. Li D.*, Liu C.*, Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nature Chemical Biology, 2021, 17(3).

24.  Sun Y.P., Zhao K., Xia W.C., Feng G.Q., Gu J.G., Ma Y.Y., Gui X.R., Zhang X., Fang Y.S., Sun B., Wang R.X., Liu C.*, Li D.*, The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nature Communications, 2020, 11(1).

25. Gu J.G., Liu Z.Y., Zhang S.N., Li Y.C., Xia W.C., Wang C., Xiang H.J., Liu Z.J., Tan L., Fang Y.S., Liu C.*, Li D.*, Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49).

26. Zhu G.Y., Xie J.J., Kong W.N., Xie J.F., Li Y.C., Du L., Zheng Q.G., Sun L., Guan M.F., Li H., Zhu T.X., He H., Liu Z.Y., Xia X., Kan C., Tao Y.Q., Shen H.C., Li D., Wang S.Y., Yu Y.G., Yu Z.H., Zhang Z.Y., Liu C.*, Zhu J.D.*, Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell, 2020, 183(2).

27. Zhao K., Lim Y.J., Liu Z.Y., Long H.F., Sun Y.P., Hu J.J., Zhao C.Y., Tao Y.Q., Zhang X., Li D., Li Y.M.*, Liu C.*, Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America of the United States of America, 2020, 117(33).

28. Liu Z.Y., Zhang S.N., Gu J.G., Tong Y.L., Li Y.C., Gui X.R., Long H.F., Wang C.C., Zhao C.Y., Lu J.X., He L., Li Y., Liu Z.J., Li D.*, Liu C.*, Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nature Structural & Molecular Biology 2020, 27 (4).

29. Lu J.X., Zhang S.N., Ma X.J., Jia C.Y., Liu Z.Y., Huang C.A., Liu C.*, Li D.*, Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. Journal of Biological Chemistry, 2020, 295 (21).

30. Ma X.J., Zhu Y., Lu J.X., Xie J.F., Li, C., Shin W.S., Qiang J.L., Liu J.Q., Dou S., Xiao Y., Wang C.C., Jia C.Y., Long H.F., Yang J.T., Fang Y.S., Jiang L., Zhang Y.Y., Zhang S.N., Zhai R.G.*, Liu C.*, Li D.*, Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. Elife, 2020, 9.

31. Sun Y.P., Hou S.Q., Zhao K., Long H.F., Liu Z.Y., Gao J., Zhang Y.Y., Su X.D., Li D.*, Liu C.*, Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinsons disease familial A53T mutation. Cell Research 2020, 30(4).

32. Wang C., Duan Y.J., Duan G., Wang Q.Q., Zhang K., Deng X., Qian B.T., Gu J.G., Ma Z.W., Zhang S., Guo L., Liu C.*, Fang Y.S.*, Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle lncRNA NEAT1-mediated liquid-liquid phase separation. Molecular Cell, 2020, 79(3).

33. Wang C.C., Tu J., Zhang S.N., Cai B., Liu Z.Y., Hou S.Q., Zhong Q.L., Hu X., Liu W.B., Li G.H., Liu Z.J., He L., Diao J.J., Zhu Z.J., Li D.*, Liu C.*, Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications, 2020, 11(1).

34. Wang L.Q., Zhao K., Yuan H.Y., Wang Q., Guan, Z., Tao J., Li X.N., Sun Y.P., Yi C.W., Chen J., Li D., Zhang, D., Yin P., Liu C.*, Liang, Y.*, Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nature Structural & Molecular Biology, 2020, 27(6).

35. Zhang H.*, Ji X.*, Li P.*, Liu C.*, Lou J.*, Wang Z., Wen W.*, Xiao, Y., Zhang, M.*, Zhu X.*, Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences, 2020, 63 (7).

36. Zhao K., Li Y.W., Liu Z.Y., Long H.F., Zhao C.Y., Luo F., Sun Y.P., Tao Y.Q., Su X.D., Li D.*, Li X.M.*, Liu C.*, Parkinsons disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nature Communications, 2020, 11(1).

37. Li D.*, Liu C.* , Structural diversity of amyloid fibrils and advances in their structure determination. Biochemistry, 2020, 59(5).

38. Cui M.K., Qi Q., Gurry T., Zhao T.X., An B., Pu J.H., Gui X.R., Cheng A.A., Zhang S.Y., Xun D.M., Becce M., Briatico F., Liu C., Lu T.K., Zhong C.*, Modular genetic design of multi-domain functional amyloids: Insights into self-assembly and functional properties. Chemical Science, 2019, 10(14).

39. Cui M.K., Wang X.Y., An B.L., Zhang C., Gui X.R., Li K., Li Y.F., Ge P., Zhang J.H., Liu C., Zhang C.*, Exploiting mammalian low-complexity domains for liquid-liquid phase separationdriven underwater adhesive coatings. Science advances, 2019,5 (8).

40. Dai B., Sargent C. J., Gui X.R., Liu C., Zhang F.*, Fibril Self-Assembly of AmyloidSpider Silk Block Polypeptides. Biomacromolecules, 2019, 20(5).

41. Duan Y.J., Du A.Y., Gu J.G., Duan G., Wang C., Gui X.R., Ma Z.W., Qian B.T., Deng, X., Zhang K., Sun L., Tian K.L., Zhang Y.Y., Jiang H., Liu C.*, Fang Y.S.*, PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Research, 2019, 29(3).

42. Gui X.R., Luo, F., Li Y.C., Zhou H., Qin Z.H., Liu Z.Y., Gu J.G., Xie M.Y., Zhao K., Dai B., Shin W.S., He J.H., He L., Jiang L., Zhao M.L., Sun B., Li X.M., Liu C.*, Li D.*, Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communications, 2019, 10(1).

43. Jia, C.Y., Ma, X.J., Liu, Z.Y., Gu, J.G., Zhang, X., Li, D.*, Zhang, S.N.*, Different heat shock proteins bind α-synuclein with distinct mechanisms and synergistically prevent its amyloid aggregation. Frontiersin Neuroscience, 2019, 13.

44. Liu C.* , Fang Y.*, New insights of poly (ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Biochemical pharmacology, 2019, 167, 58-63.

45. Lu J.X., Cao Q., Wang C.C., Zheng J., Luo F., Xie J.F., Li Y.C., Ma, X.J., He, L., Eisenberg, D., Nowick, J., Jiang, L.*, Li, D.*, Structure-based peptide inhibitor design of amyloid-β aggregation. Frontiersin molecular neuroscience, 2019, 12, 54.

46. Ma D. F., Xu C. H., Hou W. Q., Zhao C.Y., Ma J. B., Huang X., Jia Q., Ma L., Diao J., Liu C.*, Li M.*, Lu Y.*, Detecting SingleMolecule Dynamics on Lipid Membranes with QuenchersinaLiposome FRET. Angewandte Chemie. International Ed. in English 2019, 58(17).

47. Yu J., Liu Z.Z., Liang Y.Y., Luo F., Zhang J., Tian C.P., Motzik A., Zheng M.M., Kang J.W., Zhong G.S., Liu C., Fang P.F., Guo M., Razin E.*, Wang J.*, Second messenger Ap 4 A polymerizes target proteinHINT1 to transduce signals in FcεRI-activated mast cells. Nature Communications 2019, 10(1).

48. Zhang X., Zhang S.N., Zhang L., Lu J.X., Zhao C.Y., Luo F., Li D., Li X.M.*, Liu C.*, Heat shock protein 104 (HSP104) chaperones soluble Tau via a mechanism distinct from its disaggregase activity. Journal of Biological Chemistry, 2019, 294 (13).

49. Zhou H., Luo F., Luo Z.P., Li D., Liu C.*, Li X.M.*, Programming conventional electron microscopes for solving ultrahigh-resolution structures of small and macro-molecules. Analytical chemistry, 2019, 91(17).

50. Li D.*, Liu C.*, Better together: a hybrid amyloid signals necroptosis. Cell, 2018, 173 (5).

51. Li Y.W., Zhao C.Y., Luo F., Liu Z.Y., Gui X.R., Luo Z.P., Zhang, X., Li D., Liu C.*, Li, X.M.*, Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Research, 2018, 28(9).

52. Liu Z.Y., Wang C.C., Li Y.C., Zhao C.Y., Li, T.Z., Li D., Zhang S.N.*, Liu C.*, Mechanistic insights into the switch of αB-crystallin chaperone activity and self-multimerization. Journal of Biological Chemistry, 2018, 293(38).

53. Luo F., Gui X.R., Zhou H., Gu J.G., Li Y.C., Liu X.Y., Zhao M.L., Li D.*, Li X.M.*, Liu C.*, Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nature Structural & Molecular Biology, 2018, 25(4).

54. Zhang S.N., Wang C.C., Lu J.X., Ma X.J., Liu Z.Y., Li D., Liu Z.J., Liu C.*, In-cell NMR study of Tau and MARK2 phosphorylated tau. International Journal of Molecular Sciences, 2018, 20(1).

55. Liu Z.Y., Zhang, S.N., Li, D., Liu, C., A structural view of αB-crystallin assembly and amyloid aggregation. Protein & Peptide Letters, 2017, 24(4).

56. An B.L., Wang X.Y., Cui M.K., Gui X.R., Mao X.H., Liu Y., Li, K., Chu, C.F., Pu, J.H., Ren, S.S., Wang, Y.Y., Zhong, G.S., Lu, T.K., Liu, C., Zhong, C., Diverse Supramolecular nanofiber networks assembled by functional Low-Complexity domains. ACS Nano, 2017, 11(7).

57. Xie J.J., Si X.J., Gu S.L., Wang M.L., Shen J., Li, H.Y., Shen J., Li D., Fang Y.J., Liu C.*, Zhu J.D.*, Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. Journal of Medicinal Chemistry, 2017, 60(24).

58. Yang G., Zhang, X., Kochovshi, Z., Zhang, Y.F., Dai, B., Sakai, F., Jiang, L., Lu, Y., Ballauff, M., Li, X.M., Liu, C.*, Chen, G.*, Jiang, M., Precise and reversible protein microtubule-like structure with helicity driven by dual supramolecular interactions. J. Am. Chem. Soc., 2016, 138(6).

59. Wang C.C., Zhao C.Y., Li, D., Tian Z.Q., Lai Y., Diao J.J.*, Liu C.*, Versatile Structures of α-Synuclein. Frontiers in Molecular Neuroscience, 2016, 9, 48.

60. Dai B., Li D., Xi W.H., Luo F., Zhang X., Zou M., Cao, M., Hu J., Wang W.Y., Wei G.H.*, Zhang Y.*, Liu C.*, Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10).

61. Li D., Furukawa H., Deng H., Liu C., Yaghi O.M.*, Eisenberg D.S.*, Designed amyloid fibers as materials for selective carbon dioxide capture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1).

62. Hochberg G.K.A., Ecroyd H., Liu C., Cox, D., Cascio D., Sawaya M.R., Collier M.P., Stroud J., Carver J.A., Baldwin A.J., Robinson C.V., Eisenberg D.S., Benesch J.L.P., Laganowsky A., The structured core domain of aB-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16).

63. Gu L., Liu C., Stroud J.C., Ngo S., Jiang L., Guo Z.F., Antiparalle triple-strand architecture for prefibrillar Abeta42 oligomers. J. Biol. Chem., 2014, 289(39).

64. Li D., Jones E.M., Sawaya M.R., Furukawa H., Luo F., Ivanova M., Sievers S.A., Wang W.Y., Yaghi O.M., Liu C., Eisenberg D.S., Structure-based design of functional amyloid materials. J. Am. Chem. Soc., 2014, 136(52).

65. Gu L., Liu C., Stroud J.C., Ngo S., Jiang L., Guo Z.*, Structure insights into Aβ42 oligomers using site-directed spin labeling. J. Biol. Chem., 2013, 288(39).

66. Jiang L., Liu C., Leibly D., Landau M., Zhao M.L., Hughes M.P., Eisenberg D.S.*, Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. Elife, 2013.

67. Laganowsky A., Liu C., Sawaya M.R., Whitelegge J.P., Park J., Zhao M.L., Pensalfini A., Soriaga A.B., Landau M., Teng P.K., Cascio D., Glabe C., Eisenberg D.S.*, Atomic view of a toxic amyloid small oligomer. Science, 2012, 335, 1228-1231.

68. Stroud J.C., Liu C., Teng P.K., Eisenberg D.*, Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20).

69. Li D., Fu T.M., Nan J., Liu C., Li L.F., Su X.D., Structural basis forthe autoinhibition of the C-terminal kinase domain of human RSK1. Acta Crystallogr. D, 2012, 68, 680-685.

70. Cheng P.N., Liu C., Zhao M.L., Eisenberg D.*, Nowick J.S.*, Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nature Chemistry, 2012, 4(11).

71. Liu C., Zhao M.L., Jiang L., Cheng P.N., Park J.Y., Sawaya M.R., Pensalfini A., Gou D.W., Berk A.J., Glabe C.G., Nowick J.*, Eisenberg D.*, Out-of-register β-sheets suggest a pathway to toxicamyloid aggregations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51).

72. Liu C., Sawaya M.R., Eisenberg D.*, β2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nature Structural & Molecular Biology, 2011, 18(1).

73. Zheng J., Liu C., Sawaya M.R., Vadla B., Khan S., Woods R.J., Woods R.J., Eisenberg, D., Goux W.J., Nowick J.S.*, Macrocyclic β-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide. J. Am. Chem. Soc., 2011, 133(9).

 

74. Liu C., Sawaya M.R., Cheng P.N., Zheng J., Nowick J.S., Eisenberg D.*, Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic β-sheet mimics. J. Am. Chem. Soc., 2011, 133(17).

版权所有:中国科学院上海有机化学研究所 Copyright © 2002-2009
地址:中国.北京 京ICP备05002791号